Activation of ERG2 potassium channels by the diphenylurea NS1643.

نویسندگان

  • Pernille Elmedyb
  • Søren-Peter Olesen
  • Morten Grunnet
چکیده

Three members of the ERG potassium channel family have been described (ERG1-3 or Kv 11.1-3). ERG1 is by far the best characterized subtype and it constitutes the molecular component of the cardiac I(Kr) current. All three channel subtypes are expressed in neurons but their function remains unclear. The lack of functional information is at least partly due to the lack of specific pharmacological tools. The compound NS1643 has earlier been reported as an ERG1 channel activator. We found that NS1643 also activates the ERG2 channel; however, the molecular mechanism of the activation differs between the ERG1 and ERG2 channels. This is surprising since ERG1 and ERG2 channels have very similar biophysical and structural characteristics. For ERG2, NS1643 causes a left-ward shift of the activation curve, a faster time-constant of activation and a slower time-constant of inactivation as well as an increased relative importance for the fast component of deactivation to the total deactivation. In contrast, for ERG1, NS1643 causes a right-ward shift in the voltage-dependent release from inactivation but does not affect time-constants of deactivation. Because of these differences in the responses of ERG1 and ERG2 to NS1643, NS1643 can be used as a pharmacological tool to address ERG channel function. It may be useful for revealing physiological functions of ERG channels in neuronal tissue as well as to elucidate the structure-function relationships of the ERG channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643).

The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolarization current could be a new antiarrhythmic principle, because it possibly would attenuate afterdep...

متن کامل

Potent activation of large-conductance Ca2+-activated K+ channels by the diphenylurea 1,3-bis-[2-hydroxy-5-(trifluoromethyl)phenyl]urea (NS1643) in pituitary tumor (GH3) cells.

1,3-Bis-[2-hydroxy-5-(trifluoromethyl)phenyl]urea (NS1643) is reported to be an activator of human ether-à-go-go-related gene current. However, it remains unknown whether it has any effects on other types of ion channels. The effects of NS1643 on ion currents and membrane potential were investigated in this study. NS1643 stimulated Ca(2+)-activated K(+) current [I(K(Ca))] in a concentration-dep...

متن کامل

Effects of the Small Molecule HERG Activator NS1643 on Kv11.3 Channels

NS1643 is one of the small molecule HERG (Kv11.1) channel activators and has also been found to increase erg2 (Kv11.2) currents. We now investigated whether NS1643 is also able to act as an activator of Kv11.3 (erg3) channels expressed in CHO cells. Activation of rat Kv11.3 current occurred in a dose-dependent manner and maximal current increasing effects were obtained with 10 µM NS1643. At thi...

متن کامل

Strong activation of ether-à-go-go-related gene 1 K+ channel isoforms by NS1643 in human embryonic kidney 293 and Chinese hamster ovary cells.

Two different mechanisms leading to increased current have been described for the small-molecule human ether-à-go-go-related gene (herg) activator NS1643 [1,3-bis-(2-hydroxy-5-trifluoromethylphenyl)-urea]. On herg1a channels expressed in Xenopus laevis oocytes, it mainly acts via attenuation of inactivation and for rat (r) erg1b channels expressed in human embryonic kidney (HEK)-293 cells, it s...

متن کامل

Activation of hERG3 channel stimulates autophagy and promotes cellular senescence in melanoma

Ion channels play a major factor in maintaining cellular homeostasis but very little is known about the role of these proteins in cancer biology. In this work we have discovered that, the Kv11.3 (hERG3) a plasma-membrane potassium channel plays a critical role in the regulation of autophagy in a cancer cell model. We have found that pharmacologic stimulation of the Kv11.3 channel with a small m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropharmacology

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 2007